小儿葡萄糖-6-磷酸脱氢酶缺乏症病因,小儿葡萄糖-6-磷酸脱氢酶缺乏症的原因

besoo2020-01-14  12

导读:乐雅养生网导读:本文向您详细介绍小儿葡萄糖-6-磷酸脱氢酶缺乏症的病理病因,小儿葡萄糖-6-磷酸脱氢酶缺乏症主要是由什么原因引起的。一、小儿葡萄糖-6-磷酸脱氢酶缺乏症病因一、发病原因本症是一种连锁不完全显性遗传疾病,突变基因位于 X染色…

小儿葡萄糖-6-磷酸脱氢酶缺乏症病因,小儿葡萄糖-6-磷酸脱氢酶缺乏症的原因

乐雅养生网导读:本文向您详细介绍小儿葡萄糖-6-磷酸脱氢酶缺乏症的病理病因,小儿葡萄糖-6-磷酸脱氢酶缺乏症主要是由什么原因引起的。

一、小儿葡萄糖-6-磷酸脱氢酶缺乏症病因

一、发病原因

本症是一种连锁不完全显性遗传疾病,突变基因位于 X染色体上,多发于男性,杂合子女性 G6PD 活性偏低,但无溶血;纯合子女性可发病,但很少见。控制 G6PD 的基因呈复杂的多态性,可形成多种 G6PD 缺乏症的变异型。该病诱因有:蚕豆;氧化药物:解热镇痛药、磺胺药、硝基呋喃类、伯氨喹、维生素K、对氨水杨酸等;感染:病原体有细菌或病毒。

遗传学研究:1986年,Persico、Martlni等分别用不同的方法成功地克隆出人G-6-PD基因,并获得了cDNA序列,从而使G-6-PD的研究深入到基因水平,使人们能从基因水平去探讨G-6-PD缺乏的蛋白质一级结构改变。1991年Ellson等测定了人G-6-PD基因组全顺序。 G-6-PD基因长约18kb,由13个外显子和12个内含子组成,编码一个由515个氨基酸组成G-6-PD蛋白质。近年来,应用克隆G-6-PD基因技术或PCR联合直接序列分析已鉴定出120余种遗传学变异型,其中除3例为核苷酸缺失外,余均为单个或多个碱基置换,G-6-PD基因是一个看家基因(homekeeping gene),因此对生存可能是必需的,导致G-6-PD活性完全丧失的突变(如缺失或无义突变)可能是致死的,除外显子1、3、13外都已发现点突变。中国人中已发现15种点突变,现有研究证实不同地域、不同民族患者中50%以上为1376G→T和1388G→A。引起非球形细胞溶血性贫血的突变集中的在酶的羟基末端,第362~446个氨基酸的片段,而大部分导致其他疾病的突变则集中在酶的氨基末端。最让人感兴趣的是G-6-PD A-的突变。A-具有遗传异质性,它在2个部位发生了碱基置换,其中一个是376A→G,另一个可以是202G→A,680G→A或968T→C,A-在美国黑人中的频率为12%,另一种在非洲人中常见的变异型为G-6-PD A,在美国黑人中的频率为20%,G-6-PD A的突变为376A→G,正是G-6-PD A-中一定有的一个突变。因此,Beutler等认为G-6-PD A-出现是从G-6-PDB(野生型)→G-6-PD A→G-6-PDA-,由于自然选择(恶性疟疾)A-的高频率得以保存下来。按传统生化分类方法分为同一个G-6-PD生化变异型有可能是不同的基因突变所致即其实质是不同的基因变异型。如G-6-PD(-)有3种类型的基因突变:

①202G→A,376A→G;

②680G→T,376A→G;

③968T→G,376A→G。

以前认为有一些是不同的生化变异型,其实质是同一碱基突变所致。如G-6-PD生化变异型Kaiping、Anant、Dhon、Petrieh-like、Sappoto-like均为1388G→A突变(463 Arg→His)。 G-6-PD基因定位于X q28,G-6-PD缺乏为性连锁的不完全显性遗传。因此,带有变异基因的男性会发病。女性G-6-PD缺乏杂合子有两个红细胞群,G-6-PD缺乏细胞和正常细胞。G-6-PD缺乏细胞与正常细胞的比例变化很大。一些杂合子女性表现为完全正常,另一些则表现为完全异常。G-6-PD杂合子表现的这种显著变异性是X染色体失活过程的某些特性的结果。因为X染色体失活是随机的,有时更多的父本X染色体是活化的细胞克隆有增殖优势。在X染色体失活和成熟期间经过许多代细胞,即使某一种克隆比另一种只有很小的选择生长优势就会导致正常和缺失细胞数之间显著的差异,因而,在女性杂合子外周血中G-6-PD缺失红细胞与正常红细胞之比的这种显著性差异就会导致其临床表现各异。

G-6-PD及其生化变异型:G-6-PD缺乏症是由于编码G-6-PD氨基酸序列的G-6-PD结构基因异常所致。部分纯化残存酶的详细的生化研究提示它们之间存在异质性,这些异常的酶即为G-6-PD生化变异型。1966年,世界卫生组织(WHO)在日内瓦召开的国际会议上对G-6-PD变异型的命名、分型标准及方法作了统一规定。G-6-PD的定型主要根据电泳速率及酶动力学特征参数,诸如酶活性、电泳速率、6-磷酸葡萄糖(G6P)和辅酶Ⅱ(NADP)的米氏常数(KM),底物同类物(去氧G6P、磷酸半乳糖、脱氨NADP、辅酶Ⅰ)利用率、热稳定性、最适pH,但最低限度需要下列5项:

①酶活性;

②电泳速度;

③G-6-PD米氏常数;

④去氧G6P的相对利甩率;

⑤热稳定性。

目前,国际上现已报道的G-6-PD变异型有400余种,其中约300种是按WHO推荐的标准方法进行鉴定的,还有大约100种变异型是采用其他方法鉴定的。根据这些变异型的酶活性和临床意义分为5大类:第1类变异型活性非常低(低于正常的10%)伴有终身溶血性贫血;第2类变异型,尽管体外活性非常低,但不伴有慢性溶血,只有在某些特殊情况下才会发生溶血,这1类型是常见的类型如G-6-PD地中海(Mediterranean)型;第3类变异型其酶活性为正常的10%~60%,只有在服用某些药物或感染时才会发生溶血;第4类变异型是由于不改变酶的功能活性的突变所致;第5类变异型其酶的活性是增高的。第4和第5类没有临床意义。在中国人中已在香港、台湾和海外华侨中发现12种,杜传书等在广东、海南、贵州、四川、贵阳、云南等省发现35种,其中12种为世界上的新类型。国人变异型主要属于第2和第3类变异型。

二、发病机制

G6PD 缺乏可因合成量减少、 G6PD 与其底物 (G6P) 或辅酶烟酰胺腺嘌呤二核苷酸磷酸 (NADP) 亲和力降低等机制所引起。G-6-PD活性随着细胞老化呈指数性减低。正常酶(G-6-PD B)体内半衰期为62天。网织红细胞是混合细胞群活性的2倍,而老化细胞只有一半的活性。G-6-PD A-的活性在网织红细胞是正常的,但它尔后迅速减低,半衰期仅为13天。G-6-PD Mediterranean型的不稳定性甚至更显著,半衰期只有几个小时。 G6PD 酶活性减低后还原型烟酰胺腺嘌呤二核苷酸磷酸 (NADPH) 减少,还原型谷胱甘肽 (GSH) 等抗氧化损伤物质缺乏,导致高铁血红素生成和珠蛋白变性,形成海因小体。 红细胞的未成熟破坏的确切机制尚未完全明了,不同的溶血综合征其机制可能不同。早年认为主要与红细胞还原型谷胱甘肽(GSH)降低有关。红细胞内外的过氧化产物被谷胱甘肽过氧化物酶(GSHPX)还原而解毒,同时消耗GSH,GSH被氧化为氧化型谷胱甘肽(GSSG)或与血红蛋白的半胱氨酸结合形成混合二硫化合物(GSS-Hb)。在正常红细胞,GSSG及GSS-Hb立即在还原型辅酶Ⅱ(NADPH)参与下,被谷胱甘肽还原酶(GR)还原成GSH作为补充。G-6-PD缺乏红细胞的GSH被消耗后,不能得到充足的NADPH以还原GSSG及GSS-Hb,GSH得不到补充,GSH含量迅速下降,形成恶性降低,结果是GSSG和GSS-Hb在红细胞内蓄积,变性形成Heinz小体,使红细胞可塑性、变形性降低,在经脾窦时,红细胞不易变形而被阻留破坏。近年来越来越多的研究提示,G-6-PD缺乏症红细胞溶血与红细胞过氧化损伤有关。在血循环中的红细胞处于高氧环境中,红细胞膜一直处于细胞内外过氧化物包围中,在红细胞内,氧合血红蛋白不断转变为高铁血红蛋白,此过程伴有超氧阴离子的产生。为对抗各种外在和内在的过氧化物损伤,红细胞具有一系列抗氧化损害的保护机制,包括过氧化氢酶(Cat)、过氧化物酶(GSHPX)、超氧化物歧化酶(SOD)、GSH等,若这些自然保护机制有缺陷或活化的有害氧衍生物过多,血红蛋白和红细胞膜都将受到过氧化损害,并可造成不可逆损伤,导致红细胞破坏,发生溶血。现在认为,G-6-PD缺乏症红细胞内不断形成的过氧化物易伤性增高,其根本原因在于NADPH生成不足,并由此而导致GSH生成低下,功能性地缺乏Cat和GSHPX,抗氧化功能障碍,氧化易伤性增高。

乐雅养生网温馨提示:以上就是对于小儿葡萄糖-6-磷酸脱氢酶缺乏症病因,小儿葡萄糖-6-磷酸脱氢酶缺乏症是由什么原因引起的相关内容叙述,更多有关小儿葡萄糖-6-磷酸脱氢酶缺乏症方面的知识,请继续关注乐雅养生网疾病库,或者在站内搜索“小儿葡萄糖-6-磷酸脱氢酶缺乏症”找到更多扩展内容,希望以上内容可以帮助到您!


为您推荐


本文地址: https://cnleya.com/read-364373.html
免责声明:本文仅代表作者个人观点,与乐雅养生网(本网)无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
    本网站有部分内容均转载自其它媒体,转载目的在于传递更多信息,并不代表乐雅养生网(本网)赞同其观点和对其真实性负责,若因作品内容、知识产权、版权和其他问题,请及时提供相关证明等材料并与我们联系,本网站将在规定时间内给予删除等相关处理.


相关阅读

最新回复(0)